1.2 变量与函数

安冬

北京大学北京国际数学研究中心(BICMR)

andong@bicmr.pku.edu.cn

25-26 学年第 1 学期

函数的定义

设 $x \in X \subseteq \mathbb{R}$, $y \in Y \subseteq \mathbb{R}$, 若有一种规则 f, 使得对于每个 $x \in X$, 都能找到唯一确定的 $y \in Y$ 与之对应,则称 f 是一个函数

$$f: X \mapsto Y$$
,

并记 y = f(x)

▶ 定义域: X

▶ 到达域: Y

▶ **值域**: $f(X) = \{f(x) \in Y \mid x \in X\} \subseteq Y$

函数的定义

例子:

1.
$$y = \sqrt{x-1}$$

2.
$$y = \begin{cases} 4 - 3(100 - x)^2 / 1600, & 60 \le x \le 100, \\ 0, & 0 \le x < 60. \end{cases}$$

3.
$$y = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

4. $a_1, a_2, a_3, \cdots, a_n, \cdots$

初等函数

基本初等函数:

- ▶ 常数函数: f(x) = c
- ▶ 幂函数: $f(x) = x^{\alpha} (\alpha \neq 0)$
- ▶ 指数函数: $f(x) = a^x (a > 0, a \neq 1)$
- ▶ 对数函数: $f(x) = \log_a x (a > 0, a \neq 1)$, $f(x) = \ln x$
- ▶ 三角函数: $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$
- ▶ 反三角函数: arcsin x, arccos x, arctan x

初等函数

复合函数: 两个函数 $f: X \mapsto Y, g: Y^* \mapsto Z$, 并假设 $f(X) \subseteq Y^*$. 定义复合函数:

$$z = g(f(x)) = (g \circ f)(x)$$

- ▶ 定义依赖于内函数的值域和外函数的定义域有没有交集
- ▶ 结果与顺序相关
- ▶ 复合函数的值域受最外侧函数影响最大

初等函数:由基本初等函数经过有限次四则运算和复合得到的函数

初等函数

例 1:
$$f(x) = \sin x$$
, $g(x) = e^x$

例 2:
$$f(x) = \sqrt{x}$$
, $g(x) = \ln x$

例 3:
$$f(x) = \ln(-x)$$
, $g(x) = e^x$

例 4:
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$

例 5:
$$\sin(\arccos x) = \sqrt{1-x^2}$$

函数

例 6: 符号函数

$$f(x) = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

函数

例 7: 双曲函数

$$shx = \frac{e^x - e^{-x}}{2}, \quad chx = \frac{e^x + e^{-x}}{2}$$

性质:

- 1. $ch^2x sh^2x = 1$
- 2. $sh(x \pm y) = shxchy \pm chxshy$
- 3. $ch(x \pm y) = chxchy \pm shxshy$

函数

例 8: 取整函数 f(x) = [x] 表示不超过 x 的最大整数, $\{x\} = x - [x]$ 为小数函数

性质:

- 1. $[x] \le x < [x] + 1$
- 2. {x} 是以 1 为周期的函数

映射

设 $x \in X$, $y \in Y$, 若有一种规则 f, 使得对于每个 $x \in X$, 都能找到唯一确定的 $y \in Y$ 与之对应,则称 f 是一个映射

$$f: X \mapsto Y$$

并记 y = f(x)

▶ 満射: f(X) = Y

▶ **单射**: $\forall x_1, x_2 \in X, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

▶ 双射: 单射 + 满射

▶ 逆映射 (反函数): 对于双射 y = f(x),

$$f^{-1}: Y \mapsto X, \quad x = f^{-1}(y)$$

映射

例:
$$f(x) = \sin x$$

- 1. $\mathbb{R} \mapsto \mathbb{R}$
- 2. $\mathbb{R} \mapsto [-1,1]$
- 3. $[-\pi/2, \pi/2] \mapsto [-1, 1]$

有界函数

有上界: 存在一个实数 M, 使得

$$f(x) \leq M, \quad \forall x \in X$$

有下界: 存在一个实数 N, 使得

$$f(x) \ge N, \quad \forall x \in X$$

有界函数: 既有上界又有下界, 即

$$N \le f(x) \le M, \quad \forall x \in X$$

有界函数

性质:

1. $f: X \mapsto Y$ 为有界函数的充要条件是,存在一个常数 C,使得

$$|f(x)| \leq C, \quad \forall x \in X.$$

2. 设 $f: X \mapsto Y, g: X \mapsto Y$ 是两个有界函数,则 $f \pm g$ 和 $f \cdot g$ 也是有界函数

函数的其他性质

单调性、奇偶性、周期性

作业

习题 1.2: 2(2), 7, 8(3), 10(2), 14, 16